Reversible Cyclisation of ortho-Blocked N-Arylnitroso-imines

By Thomas L. Gilchrist, Michael E. Peek, and Charles W. Rees (The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX)

Summary N-Aryl-C-nitroso-imines (1), in which the ortho positions of the N-aryl substituent are occupied by methyl groups, undergo rapid but reversible ring-closure to the 1,2,4-oxadiazines (3); the nitroso-imines can be intercepted in a Diels-Alder reaction with thebaine, whereas the tautomers (3) slowly dimerise.

WE have reported that N-arylnitroso-imines are generated by the oxidation of the corresponding amidoximes, and that, in the absence of a trapping agent, they undergo very rapid and irreversible ring-closure to 1,2,4-benzoxadiazines.¹ In the hope of increasing the lifetime of the transient nitrosoimines, the *ortho* positions of the *N*-aryl substituent were blocked with methyl groups; the nitroso-imines (1) have therefore been generated from the corresponding amidoximes.

The N-mesitylnitroso-imine (1a) was generated by oxidation of the amidoxime (2a), m.p. 162-164 °C, with lead tetra-acetate in dichloromethane at -78 °C. A red solution was obtained; the colour faded when the temperature of the solution was allowed to rise above -20 °C, and a yellow oil was isolated in quantitative yield. The 1,2,4-oxadiazine structure (3a) was assigned to the product on the basis of its 1 H n.m.r. spectrum, which showed signals for the

J.C.S. CHEM. COMM., 1975

ring methyl groups at δ 1·09, 1·95, and 2·19, and for the ring hydrogen atoms at δ 5·93 and 6·40. The u.v. spectrum contained a long wavelength absorption at 390 nm (ϵ 510). When the oil was allowed to remain at room temperature for several days, a colourless crystalline dimer, m.p. 161—162 °C, was isolated (40%). Cyclohexa-2,4-dienones readily form dimers by Diels-Alder addition; comparison of the 100 MHz ¹H n.m.r. spectrum of the known dimer (4) of 6-hydroxy-2,4,6-trimethyl cyclohexa-2,4-dienone with that

of the dimer obtained from the oxadiazine (3a) showed that the two dimers were closely similar in structure. In particular, the adjacent methine hydrogens of (4) (δ 2·81 and 3·15) have a very small coupling constant (< 1 Hz) because, as models show, the C–H bonds are nearly orthogonal; similarly, the methine hydrogens of the dimer of (3a), which occur at δ 2·61 and 3·51, show no discernible coupling. On this basis, the structure (5) is assigned to the dimer of (3a); this mode of dimerisation is the one normally observed with cyclohexa-2,4-dienone derivatives.²

When the oxidation of the amidoxime (2a) was carried out at -78 °C in the presence of thebaine, a red colour was not observed in the solution, and a 1:1 adduct, (6), of thebaine and the nitroso-imine (1a), m.p. 92—96 °C, was isolated (84%). The presence of a mesityl group in (6) is indicated by a signal at δ 6·77 (2H) corresponding to that expected for the ring hydrogen atoms; the three methyl groups appear as separate signals at δ 1·98, 2·11, and 2·20, presumably because of restricted rotation of the substituent. The oxadiazine (3a) and thebaine gave the same adduct (6) (70%) after 24 h in dichloromethane at room temperature; this indicates that closure of the nitroso-imine to the oxadiazine is reversible, although the equilibrium strongly favours the oxadiazine.

Sodium borohydride in methanol-tetrahydrofuran at $-10\,^{\circ}\text{C}$ very rapidly reduced the oxadiazine (3a) to the amidoxime (2a) in high yield (80%); this could result from nucleophilic addition to the diene-imine followed by ring opening, or possibly by reduction of the nitroso-imine tautomer. The oxadiazine (3a) did not react with phosphorus trichloride, but was degraded to a complex mixture of products by trifluoroacetic acid or by irradiation. 4-Phenyl-1,2,4-triazoline-3,5-dione gave a Diels-Alder adduct (70%; m.p. 149 °C) with (3a) at room temperature.

An analogous series of reactions was observed with the nitroso-imines (1b), (1c), and (1d): in each case the nitroso-imine cyclises to the 1,2,4-oxadiazine (3).

(Received, 22nd September 1975; Com. 1082.)

¹ T. L. Gilchrist, M. E. Peek, and C. W. Rees, preceding communication.

² A. J. Waring, in 'Advances in Alicyclic Chemistry,' eds. H. Hart and G. J. Karabatos, Academic Press, New York, 1966, Vol. 1., p. 129.

⁸ E. Adler, J. Dahlen, and G. Westin, *Acta Chem. Scand.*, 1960, 14, 1580.